Abstract
Highly resolved laboratory measurements of the airflow over wind-generated waves are examined using a novel wave growth diagnostic that quantifies the presence of Miles’ critical layer mechanism of wind-wave growth. The wave growth diagnostic is formulated based on a linear stability analysis, and results in growth rates that agree well with those found by a pressure reconstruction method as well as other, less direct, methods. This finding, combined with a close agreement between the airflow measurements and the predictions of linear stability (critical layer) theory, demonstrate that the Miles’ critical layer mechanism can cause significant wave growth in young (wave age c/u∗=6.3, where c is the wave phase speed, and u∗ the friction velocity) wind-forced waves.