Abstract
Magnesium is classified as lightweight material and as biomaterial because of its low density and good biocompatibility and biodegradability in the human body. It is therefore expected to be applied as microforming technical components and medical engineering products. Because of its close-packed hexagonal lattice structure, Magnesium and typical magnesium alloys such as AZ31 are known to have low ductility and poor formability in cold forming processes.
Therefore, dieless drawing with local heating by a high frequency generator offers an alternative processing opportunity for magnesium alloys such as AZ31. The dieless drawing can result in high reductions in the cross sectional area in a single pass by using a local heating source, which initiates a localized plastic zone under an external tensile load.
For this purpose, a flexible experimental setup for a dieless wire drawing process is designed and manufactured. First experimental analysis with AZ31 wires are carried out in order to analyze the feasibility of the setup. The process parameters drawing speed, feeding speed and temperature are analyzed to achieve a uniform reduction in cross sectional area and therefore stability within the local deformation zone. First process limits are detected for dieless drawing of AZ31 wire.