Abstract
Long-term atmospheric changes are a result of complex interactions on various spatial scales. In this study, we examine the long-term variability of the most important meteorological variables in a convection-permitting regional climate model simulation. A consistent, gridded data set from 1948 to 2014 was computed using the regional climate model COSMO-CLM with a very high convection-permitting resolution at a grid distance of 2.8 km, for a region encompassing the German Bight and Northern Germany. This is one of the very first atmospheric model simulations with such high resolution, and covering several decades. Using a very high-resolution hindcast, this study aims to extend knowledge of the significance of regional details for long-term variability and multi-decadal trends of several meteorological variables such as wind, temperature, cloud cover, precipitation, and convective available potential energy (CAPE). This study demonstrates that most variables show merely large decadal variability and no long-term trends. The analysis shows that the most distinct and significant positive trends occur in temperature and in CAPE for annual mean values as well as for extreme events. No clear and no significant trend is detectable for the annual sum of precipitation and for extreme precipitation. However, spatial structures in the trends remain weak.