Abstract
A permanent mould cast creep resistant MRI 230D Mg alloy was laser surface alloyed (LSA) with Al and Al2O3 in order to improve its wear and corrosion resistance. However, this treatment was successful only in improving wear resistance but not corrosion resistance due to the presence of micro−cracks in the coated layer, which has been discussed in an earlier paper. The LSA coated Mg alloy has been further subjected to plasma electrolytic oxidation (PEO) treatment in alkaline silicate electrolyte in order to cover those micro−cracks and improve corrosion resistance, which is discussed in the present manuscript. For comparison, the PEO coating has also been applied on the as−cast MRI 230D Mg alloy. The microstructural characterization of coatings and corroded surfaces was carried out by scanning electron microscope and X−ray diffraction. Electrochemical corrosion tests were conducted in 3.5 wt% NaCl solution having neutral pH to investigate the corrosion behavior. The LSA coatings consisted mainly of β (Mg17Al12) phase, the coatings produced by PEO treatment on MRI 230D Mg alloy consisted mainly of Mg2SiO4 phase, and hybrid coatings of PEO on LSA consisted of Mg2SiO4 and MgAl2O4 phases in the PEO layer. Scanning electron micrographs of the cross−section revealed that the PEO treatment covered the micro−cracks present in the LSA and corrosion tests revealed that it improved the corrosion resistance, though not to the extent of the corrosion resistance of the PEO coated MRI 230D Mg alloy. All the samples exhibited localized form of corrosion.