Abstract
The influence of additives on the reaction kinetics and microstructure refinement in LiBH4–MgH2 composites is investigated in detail. Indications of the rate-limiting processes during the reactions are obtained by comparison of the measured reaction kinetics with simulations with one specific rate-limiting process. The kinetics of the sorption reactions are derived from volumetric measurements as well as from in situ X-ray diffraction measurements. During desorption, the hydrogen is released at a constant rate, which is possibly correlated with the one-dimensional growth of MgB2 platelets. In contrast, the kinetic curves of the absorption reactions exhibit the typical shape of contracting-volume controlled kinetics. The microscopical interpretation of kinetic measurements are supported by transmission electron microscopy images confirming the formation of additive-nanostructures in the grain boundaries upon cycling. The present investigations underline the importance of the additives as nucleation substrates and the influence of microstructure on the reaction kinetics.