Abstract
Despite substantial advantages in material development and in periodic non-destructive inspection together with periodic grinding and other measures in order to guarantee safe service, fatigue crack propagation and fracture is still in great demand as emphasised by the present special issue. Rails, as the heart of the railway system, are subjected to very high service loads and harsh environmental conditions. Since any potential rail breakage includes the risk of catastrophic derailment of vehicles, it is of paramount interest to avoid such a scenario. The aim of the present paper is to introduce the most important questions regarding crack propagation and fracture of rails. These include the loading conditions: contact forces from the wheel and thermal stresses due to restrained elongation of continuously welded rails together with residual stresses from manufacturing and welding in the field, which is discussed in Section 2. Section 3 provides an overview of crack-type rail defects and potential failure scenarios. Finally the stages of crack propagation from initiation up to final breakage are discussed.